Investigation on mtDNA deletions and twinkle gene mutation (G1423C) in Iranian patients with chronic progressive external opthalmoplagia.
نویسندگان
چکیده
BACKGROUND Chronic progressive external ophthalmoplagia (CPEO) is a phenotypic mitochondrial disorder that affects external ocular and skeletal muscles and is associated with a single or multiple mitochondrial DNA (mtDNA) deletions and also nuclear gene mutations. There are also some reports about the relationship between CPEO and the nuclear Twinkle gene which encodes a kind of mitochondrial protein called Twinkle. AIMS To study the mtDNA deletions and Twinkle gene G1423C point mutation in Iranian patients with CPEO. MATERIALS AND METHODS We collected 23 muscle samples from patients with CPEO, 9 women (mean age 34.3 years) and 14 men (36.7 years). Multiplex polymerase chain reaction (PCR) method was used to find the presence of single or multiple deletions in mtDNA. Single stranded conformational polymorphism (SSCP) and restriction fragment length polymorphism (PCR-RFLP) methods were carried out to investigate point mutation (G1423C) in the Twinkle gene in all DNA samples. RESULTS Different sizes of mtDNA deletions were detected in 16 patients (69.6%). Each of the 5.5, 7, 7.5 and 9 kb deletions existed only in 1 patient. Common deletion (4977bp) and 8 kb deletion were detected in 5 and 3 patients respectively. Multiple deletions were also present in 4 patients. Out of 23 patients included in our study, two cases (8.7%) had Twinkle gene mutation (G1423C) and 5 patients (21.7%) did not show any deletions in mtDNA or the Twinkle gene mutation. CONCLUSION Our study provides evidence that the investigation of mtDNA and Twinkle gene mutations in CPEO may help with early diagnosis and prevention of the disease. Patients who did not show deletions in the mtDNA or G1423C mutation in the Twinkle gene may have other mtDNA, Twinkle or nuclear gene mutations.
منابع مشابه
Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice.
Defects of mitochondrial DNA (mtDNA) maintenance have recently been associated with inherited neurodegenerative and muscle diseases and the aging process. Twinkle is a nuclear-encoded mtDNA helicase, dominant mutations of which cause adult-onset progressive external ophthalmoplegia (PEO) with multiple mtDNA deletions. We have generated transgenic mice expressing mouse Twinkle with PEO patient m...
متن کاملTwinkle and POLG defects enhance age-dependent accumulation of mutations in the control region of mtDNA.
Autosomal dominant and/or recessive progressive external ophthalmoplegia (ad/arPEO) is associated with mtDNA mutagenesis. It can be caused by mutations in three nuclear genes, encoding the adenine nucleotide translocator 1, the mitochondrial helicase Twinkle or DNA polymerase gamma (POLG). How mutations in these genes result in progressive accumulation of multiple mtDNA deletions in post- mitot...
متن کاملTwinkle mutations associated with autosomal dominant progressive external ophthalmoplegia lead to impaired helicase function and in vivo mtDNA replication stalling
Mutations in the mitochondrial helicase Twinkle underlie autosomal dominant progressive external ophthalmoplegia (PEO), as well as recessively inherited infantile-onset spinocerebellar ataxia and rare forms of mitochondrial DNA (mtDNA) depletion syndrome. Familial PEO is typically associated with the occurrence of multiple mtDNA deletions, but the mechanism by which Twinkle dysfunction induces ...
متن کاملTwo families with autosomal dominant progressive external ophthalmoplegia.
OBJECTIVES We report here the clinical and genetic features of two new families with autosomal dominant progressive external ophthalmoplegia (adPEO). PATIENTS AND METHODS The examination of index patients included a detailed clinical characterisation, histological analysis of muscle biopsy specimens, and genetic testing of mitochondrial and nuclear DNA extracted from muscle and leucocytes. ...
متن کاملReconstitution of a minimal mtDNA replisome in vitro.
We here reconstitute a minimal mammalian mitochondrial DNA (mtDNA) replisome in vitro. The mtDNA polymerase (POLgamma) cannot use double-stranded DNA (dsDNA) as template for DNA synthesis. Similarly, the TWINKLE DNA helicase is unable to unwind longer stretches of dsDNA. In combination, POLgamma and TWINKLE form a processive replication machinery, which can use dsDNA as template to synthesize s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurology India
دوره 54 2 شماره
صفحات -
تاریخ انتشار 2006